2 resultados para forages

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Territoriality is widely accepted as the mechanism responsible for density-dependent mortality, emigration, and 'self-thinning' of populations of juvenile salmonine fishes in streams. Numerous studies have focused on territoriality exclusively in stream (lotic) environments and thus have fostered a stereotyped view of juvenile salmonines as sedentary and territorial. We term this behavioural paradigm the central-place territorial model (CPTM).

2. We tested predictions characterizing the CPTM for young-of-the-year (YOY) brook charr (Salvelinus fontinalis) in two Canadian lakes to determine if territoriality may also potentially limit space and population size of brook charr in lakes.

3. Our findings were not consistent with the CPTM. Fish in both lakes were not central-place forages. Maximum displacement distance did not increase with body length as predicted by the general salmonine model of Grant and Kramer (1990). Net displacement distanced increased with the proportion of time spent moving. Aggressive frequency was greatest for fish which spent large proportions of time moving and did not defend from a central-place.

4. Fish in both lakes were rarely aggressive, highly active, and often moved back over the same areas. However, lake fish which migrated to a tributary stream had no net displacement (central-place foraging) illustrating the immediate effects of current on foraging tactics and space-use.

5. The effect of hydrodynamic environment (flowing vs. still water) on fish behaviour needs to be explicitly considered in future models of salmonine behaviour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Researches on Physarum polycephalum show that methods inspired by the primitive unicellular organism can construct an efficient network and solve some complex problems in graph theory. Current models simulating the intelligent behavior of Physarum are mainly based on Hagen-Poiseuille Law and Kirchhoff Law, reaction-diffusion, Cellular Automaton and multi-agent approach. In this paper, based on an assumption that the plasmodium of Physarum forages for food along the gradient of chemo-attractants on a nutrient-poor substrate, a new model is proposed to imitate its intelligent foraging behavior. The key point of the model is that the growth of Physarum is determined by the simple particle concentration field relating the distance to food source and the shape of food source on a nutrient-poor substrate. To verify this model, numerical experiments are conducted according to Adamatzky[U+05F3]s experiment. Results in spanning tree construction by this model are almost the same as those of Physarum and Oregonator model. The proposed model can also imitate Physarum to avoid repellents. Furthermore, the Euclidean Spanning tree built by this model is similar to its corresponding Minimal Euclidean Spanning tree.